Recommendations to CRTF Acropora/Montastreae

Submitted by Speaker and Public Attending the Workshop 10/31/09

Update 31-year old Coral Reef Inventory

- Revisit original sites.
- Also include:
 - Adjacent islands and keys.
 - Shelf-edge reefs.
 - Mesophotic reefs.
- Develop a GIS-based model regarding spatial distribution and actual conditions of coral colonies.

Go back to Montastraea Biology 101

- Study basic biology of coral physiological fragments:
 - Survival rates*.
 - Growth rates*.
 - Tissue regeneration*.
 - Competition effects*.
 - Gametogenesis*.
 - Reproduction*.
 - Population genetics.
 - Impacts of environmental gradients.
 - Geographic and bathimetric distribution.
 - Microbiology.

Population collapse? Hierarchical approach: From regional to coral colony scale


- Develop a protocol to monitor individual tagged coral colonies.
- Modification of existing longterm ecological monitoring programs to address water quality issues.

- Develop "early warning signals".
- Sediment-water toxicity assessments.

Applied research

- Develop studies regarding
 bioerosion rates under different
 environmental conditions, in
 particular, now that we are
 having the challenge of climate
 change & ocean acidification.
- Document coral recruitment rates.
- Expand existing experiments regarding larval culture and reintroduction of coral spat to natural reefs under various temperature & water quality regimes.

The past is still the key to the present!

- Develop large scale sclerochronological studies to:
 - Address historical rates of ecological change across large spatial scales.
 - Determine historical patterns of change in coral reefs across anthropogenic gradients.
 - Discriminate between historical trends of localized human impacts and climate change.

- Monitoring deep reefs
- Determine whether Montastraea annularis on deep reefs is same species and whether it could serve as source for recovery of shallow water populations
- Consortia with municipalities and local organizations for monitoring and recovery actions
- Qualification process for groups interested in assisting in monitoring activities
- Experimental removal of competing species, such as snails to measure impact and effectiveness (Acropora)

- Experimental removal of competing species, such as snails to measure impact and effectiveness (Acropora)
- Interventions to recover and stabilize fragments impacted by groundings (Acropora)
- Marine debris assessment and removal (Acropora)
- Continue long-term monitoring of PR reefs in natural reserve system through monitoring program
- Interconnection between coastal wetlands, seagrass beds, coral reefs very important in defining management strategies

- Determine whether recovery is regrowth or recruitment
- Establish protocol for community groups so everyone can use the same methodology for comparability – training of interested persons
- Any kind of restoration effort probably needs to include a propagation component because sexual reproduction is key; fragmentation for some species is also useful (nurseries can be land-based or in situ)
- Restoration and recovery need to be a combination of methods not just one
- Measure effectiveness of no-take zone regulations in terms of health of corals and fish to determine if notake restrictions help coral respond to other stressors

- Focus attention on reefs with resilient colonies of Montastraea/resistant to bleaching events
- Include more acroporid reef sites in characterization and monitoring program
- Launch an island-wide survey of acroporid and Montatreae corals
- Fund research to study anti-cyclonic eddies